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ABSTRACT 

Using an eigenvector of a complex matrix A, a unitary matrix U is constructed, so 
that UHAU deflates A, and this deflation preserves some special structural properties 
of A, e.g., the Hessenberg form, the lower banded structure, and the symmetry (in 
case A is real). 

In practice we often need to solve the eigenvalue (or eigensystem) 
problem for a given matrix. Usually we first reduce the given matrix to a 
special condensed form [l], such as the Hessenberg form, the tridiagonal 
form, or a general band form, by means of similarity transformations. After 
finding some eigenvalues and the corresponding eigenvectors, we use a 
method to deflate the condensed matrix to a lower order one. Usually the 
classical deflations destroy the structural properties of the matrix. Lajos L&z16 
[2] gave a method which deflates real symmetric matrices and preserves the 
band structure. In this paper we present a generalization of this method 
which preserves several structural properties of the given matrix and further- 
more can be applied to more general matrices. 

We will make use the following basic definitions in this paper later. Let A 
be a given n x n complex matrix. 

DEFINITION 1. A matrix A is called lower band structure with lower 
bandwidth I if 

ajj= 0 whenever i > j+ I, I < i,j,c n. 
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DEFINITION 2. A matrix A is called (upper) Hessenberg if 

aij=o whenever i>j+l, l<i, j<n. 

DEFINITION 3. A matrix A is said to have a band structure with band- 
width 1 if 

aij=O when Ii - j > 1. 

We start with our first observation. 

LEMMA 1. Let cl, c2,. . . ,ck, k > 1, ck * 0, be given complex numbers. 
Then there exists a unique negative number d and a unique complex number 
A such that 

i=2 

d2 +IX12 i Ici12 = 1. 
i=2 

Proof It is obvious that Equations (1) and (2) hold for 

’ i: ICi12 ’ 1’2 
d:=- + 

c Icj12 
j= 1 / 

and for 
_ 

A: = Cl 

( i lci12* I? lcj12 
i 

l/2 . 

i=2 j=l 

(2) 

The uniqueness follows from the fact that Equations (1) and (2) only have two 
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pairs of solutions 

d=+ 

A= - 

i: lci12 

i=2 

ii lcj12 

j= 1 I 
dc, 

l/2 
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and only one pair of which satisfies d < 0. 

THEOREM 1. For any unit complex k-dimensional column vector 

there exists a lower Hessenberg unitary matrix U = (u,, . . . , uk) of order k with 
negative superdiagonal elements such that 

(a) u = u1 is the first column of U, 
(II) and there are complex numbers p2,. . . ,pk with the property that 

uij=Pj”i12 i=j,j+l,... ,k, 2<j<k. 

Proof. Since ukl * 0, applying Lemma 1, we can find negative numbers 
di and complex numbers pi which satisfy 

d,U,_l+pi 5 (up12=O> i=2 k. ,.**> (1’) 
j=i 

k 

df +IpiI’C Jup12=1, i=2 k. ,.‘.> (2’) 
i=i 

Let us define u1 = u and 

ui = diei_l + ~~(0 ,..., uil,.. .,u~~)~, i=2,3 k, ,.*., 

where e, is the ith column vector of the identity matrix I,. 
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It follows from Equation (2’) that 

and in view of Equation (1’) we get 

uluj= cj_lldj+Pj$ Jui112=o H 

i=j 

Whenl<j<s<k,wehave 

j=2 k, ,*..> 

for j= 2,s ,..., k. 

Hence UHU = I, or UH = U- ‘, and it is evident that U is lower Hessenberg. 
n 

In Theorem 1, the lower Hessenberg unitary U is constructed from the 
given complex column vector 

u = (urr,u2r,...‘uJ ‘, k>l, ukl* 0; 

therefore we denote it by U, or U”,. 
Since in Lemma 1, d and h are uniquely determined, the lower Hessen- 

berg unitary matrix U of Theorem 1 is unique. 

Let o<~,,cp,,...,~~-, <7r, ci=coscpi,si=sincpi,i=1,2 ,..., n-l. We 
can easily prove that the real lower Hessenberg matrix 

with 

U(cp,,cp,,..., ‘P,-l)=C”ij)’ 

Ulj = 

i 

0 n> j>i+l, 

- sjP 
n> j=i+l, 

ci_rsj. . . si_lcj, n>i& j>l, cO=l, c,=l, 

is a unitary matrix. 
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For a given real unit column vector u = (u,,, . . . ,u,,)r, ukl > 0, we 
compute the ci ‘s and sits as follows: 

2._ 2 
uk. - ukl 

u,“: = us!+1 + Ufl, s=k-1 1 >.-.a > 

ci: = UiJUi, ui > 0, i = 1,2 ,...,k - 1, 

si: = ui+l/ui, i = 1,2 ,...,k - 1. 

It is obvious that the real Hessenberg unitary matrix U( qi,. . . , qk_ 1) has 
negative super-diagonal elements and has u as its first column. 

Note that the number of arithmetical operations for calculating the ci’s 
and the sj’s from the given real column vector u = (u,,, . . . ,u~~)~, ukl > 0, is 
no more than 3k - 2 multiplications (including squares and divisions), k - 1 
additions, and k - 1 square roots. 

We would like to point out that for any complex lower Hessenberg unitary 
matrix U,,, we can find two diagonal unitary matrices 

D, = diag(eial,...,eian) 

and 

such that D,UD,=U(cp,,~p~,...,cp,~,) for some O<c~,,...,ph-~<n-. We 
omit the proof here, since it is not needed for the purpose of this paper. 

LEMMA 2. Let u=(z~~,...,u~~) T, k > 1, ukl * 0, be a unit column 
vector. If U = U, is the lower Hessenberg unitary matrix constructed from u, 
and v =(0 ,..., 0,~ ,..., ok), v, * 0, is the row vector which satisfies 

k 

vu1 = c viuil = 0, 
i=s 

then the first s components of the row vector VU, are zeros. 

Proof. Let 
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then we have 

k 

rj= c viuij. 
is.9 

When 1~ j< s, then from Theorem 1 it follows that 

rj=pjvul=o, j= 1,2 ,...,s. 
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Using Theorem 1 and Lemma 2 we can prove the main result of our 
paper. 

THEOREM 2. lf a given n x n matrix A has a lower band structure with 
lower bandwidth 1, if u = (u,,, . . . ,ukl,O,. . . ,O)T, k > 1, ukl * 0, is a unit 
eigenvector of A, and if 

where U, is the lower Hessenberg unitary matrix of order k constructed from 

(u 11,. . . ,Ukl)T, then 

UHAU= 

A, x ‘.. x 

0 
A(‘) 

\ 

> 

, 

where h, is the eigenvalue of A corresponding to the eigenvector u, and A(‘), 
which is of order n - 1, has a lower band structure with lower bandwidth 
< 1. 

Proof. It is obvious that U is unitary. We rewrite A as 
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where A,,, A,, are square lower banded matrices with lower bandwidth < 1, 
and are of order k and n - k, respectively. Then 

where B = VkHAI1. 
Since UkH is an upper Hessenberg matrix and A,, is lower banded with 

lower bandwidth < I, therefore VkHAll = B is lower banded with lower 
bandwidth < I+ 1. 

Because the first column of V is U, the unit eigenvector of A, we have 

UHAu = A,UHu = Ale,, 

where X, is the eigenvalue of A corresponding to u. Therefore, we have 

and 

(4) 

That implies that each nonzero row of the matrix B, except the first one, and 
each nonzero row vector of the matrix A,, satisfies the conditions of Lemma 
2. It follows from Lemma 2 that (lower bandwidth of BU,) < (lower band- 
width of B) - 1 Q (1 + 1) - 1 = I, and that before the nonzero component 
there are more zero components in each nonzero row vector of A,,Q than in 
the corresponding row vector of A,,. n 
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Notice that when u = e,, then 

‘Ai r 
0 

A= . 

0 
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. . . X\ 

A(1) ’ 

/ 

so we need only consider the cases for which k > 1. 
It is easy to see that if A is real and the known eigenvector u is also real, 

then we can choose U to be real, and Theorem 2 still holds for the field of real 
numbers. 

We can get following corollaries from Theorem 2: 

COROLLARY 1. lf A is real symmetric and in a banded form, then the 
deflation preseroes all these properties. 

COROLLARY 2. The Hessenberg form is preserved in the deflation. 

In order to carry out our deflation, we suggest following algorithm: Let 
a = (a,, . . . , ak) be a real row vector, and let U be a real lower Hessenberg 
unitary matrix with known parameters cj, si, i = 1,. . . ,n - 1. We compute 
a’ = aU by the scheme 

I. - 
ake - ck_lrk - sk__lak_12 

1;: = cia, + sir,+,, i=k-1 2 7***, , 

a:: = ci_lr, - si_lai_l, i=k-1,...,2, 

al. ‘. = clal + sir,. 

The total number of arithmetical operations for computing a’ is no more 
than 4k - 4 multiplications and 2k - 1 additions. So we see that, using our 
algorithm, the total number of arithmetical operations for deflating a given 
real matrix with a known real eigenvector u = (u,,, . . . ,u,,,O,. . . ,O)T, ukl > 0, 
never exceeds 8nk - 8n +3k multiplications, 4nk - 2n + k additions, and 
k - 1 square roots. 
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REMARK. Using a given eigenvector to generate a unitary U such that 
U”AU deflates A and preserves the lower band structure, we need to 
compute some square roots. If instead of using a unitary matrix U we use UD 
for some nonsingular diagonal matrix D, then we do not need to compute any 
square roots. This procedure still preserves the properties we need, namely, 
D- ‘U HAUD still deflates A and this deflation preserves the lower band 
structure. But Corollary 1 is not true for a nonunitary deflation. 

If, using nonunitary deflation, it is not necessary to calculate the square 
roots, then the total number of multiplications to deflate a matrix with a 
known eigenvector is approximately three-fourths that for unitary deflation. 
The details of description of the nonunitary deflation scheme we omit here. 
Nonunitary deflation may suffer numerical instability. 

The author would like to express his appreciation to Professor R. P. 
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